
Lecture 6: Isospin and SU(3)

• The Hadronic Spectrum

• Isospin and Scattering Relations

• Resonances: The ∆

• Strangeness

• Charge and the Gell-Mann Nishijima Eq

• Group Theory Interpretation

• SU(2) and SU(3)

• Quark Model Interpretation



The Hadronic Spectrum

• ∃ only 3 generations of leptons (e, µ, τ and their respec-

tive neutrinos), but hundreds of hadrons

• Physicists soon realized that it’s not sensible to consider
these hadrons fundamental

– Look for basic patterns in masses, spins, charges

– Look for rules to relate interaction rates and decay rates of dif-

ferent hadrons in terms of internal quantum numbes

• Today we know hadrons are composite particles made of
quarks

– Spectrum of observed particles analog of period table of ele-

ments

– Because αs large at low mom transfer, the theory is not pertur-

bative

– We cannot calculate the wave functions of the quark bound

states (hadrons)

– We’ll see in a few weeks that bound states of heavy quarks can

give us clues to the shape of the potential

• In 1960’s no one knew whether quarks were real or just
mathematical constructs

– But we’ll use our modern knowledge to inform our discussion

and terminology



Classification of Hadrons

• Mesons (integer spin) vs Baryons (half integer spin)

– Baryons must be pair produced, but mesons can be produced

singly

• Baryons

– Earliest examples: p and n

– Fact that both appear to see same nuclear force and that the

masses are so close together (mp = 938.20 MeV, mn = 939.57

MeV) make it natural to think of them as 2 states of same parti-

cle: the nucleon N

– Define isospin (with same algebra as spin: SU(2)). Then N has
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• Mesons

– Earliest example: The pions

– Three charges π+, π0 ,π− so I = 1:

π+ = |11〉 π0 = |10〉 π− = |1−1〉

• Note: For N, Q = Iz+ 1
2 while for πQ = Iz

These are special cases of a more general rule we’ll get

to soon



Example: πN scattering

• Can use isospin to relate different reaction rates

• Each value of isospin that is possible provides an independent ma-

trix element

• For πN scattering I = 1⊗ I = 1
2 ⇒ I = 3
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• Examples of decomposition
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and so forth

• Thus
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We can determine all the scattering rates in terms of these 2 ampli-

tudes



More on pN scattering
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• Large bumps: “resonances”

• Eg: near 1236 MeV

– Width ∼ 120MeV ⇒ short lifetime: ∆E∆t ∼h̄:

∆t ∼ h̄
∆E

∼ 6.58×10−22 MeV sec
120 MeV

∼ 5×10−24 sec

This resonance is called the ∆

• Four states: I = 3/2: ∆++,∆++,∆+, ∆0,∆−

• There is NO ∆−−



Strangeness

• In 1950’s a new class of hadrons seen

– Produced in πp interaction via Strong interactions

– But travel measureable distance before decay, so decay is weak

Why should this happen? There must be conserved quantum number preventing

the strong decay

• Example:

π−p→ Λ0K0

– Λ0 → pπ− with lifetime τ = 2.6×10−10 sec

– K0 → π+π− with lifetime τ = 0.8958×10−10 sec

• Assign a new quantum number called strangeness to the

Λ and K0

• By convention Λ has S= −1 and K0 has S= 1 (an un-

fortunate choice, but we are stuck with it)



Strangeness and IZ

• We’ve already seen that within an isospin multiplet, dif-

ferent Iz have different charge

• Can generalize this observation for all light quark (u,d,s)

multiplets:

Q = Iz+
B+S

2
Define hypercharge Y ≡ B+S

• This is called the Gell Mann-Nishijima Eq

• Note: Because Q is determined from I3, EM interactions
cannot conserve isospin, but do conserve I3

– This is analogous to the Zeeman effect in atomic physics where

a B field in z direction destroys conservation of angular momen-

tum, but leaves Jz as a good quantum number

• EM coupling∼1%so effects of isospin non-conservation

are small and can be treated as perturbative correction

to strong interaction



Group Theory Interpretation

• Describe particles with same spin, parity and charge

congugation symmetry as members of a multiplet with

different Iz and Y

• Will define (next 2 pages) raising and lowering operators

to navigate around the multiplet

• Gell Man and Zweig suggested that patterns of multiplets
could be explained if all hadrons were made of quarks

– Mesons: qq 3⊗3 = 1⊕8

– Baryons: qqq 3⊗3⊗3 = 1⊕8⊕8⊕10

• In those days, 3 flavors (extension to 6 discussed later)



Introduction to Group Theory (via SU(2))

• Let’s start by reviewing SU(2) Isospin

• Fundamental representation: a doublet

χ =

(
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)
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• Define rotation in isospin space in terms of infinitesmal
generators of the rotations
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)
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(
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• The τ matrices satisfy commutation relations

[
1
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τi ,
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τ j ] = i εi jkτk

These commutation relations define the SU(2) algebra

• We can have higher representations of SU(2): N ×N

matrices with N = 2I +1

• Also, there is an operator that commutes with all the τ’s:

I2 = (
1
2
~τ)2 =

1
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Σi τ2
i

and there are raising and lowering operators

τ± =
1
2
(τ1± iτ2)



Extension to SU(3))

• SU(3): All unitary transformations on 3 component com-
plex vectors without the overall phase rotation (U(1))

U†U = UU† = 1 detU = 1

U = exp[i
8

∑
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λaθa/2]

• The fundamental representation of SU(3) are 3×3 ma-
trices
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where f123 = 1, f147 = f246 = f257 = f345 = 1
2, f156 =

f367= −1
2 and f458= f678=
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SU(3) Raising and Lowering Operators

• SU(3) contains 3 SU(2) subgroups embedded in it

Isospin : F1 F2 F3

U−spin : F6 F7
√

3F8−F3

V −spin : F4 F5
√

3F8+F3

• For each SU(2) subgroup we can form the usual raising and lowering operators

• Any two of the three subgroups are enough to navigate through all the members

of the multiplet

• Fundamental representation: A triplet

• Define group structure of the state by starting at one corner and using raising and

lowering operators

(V−)p+1φmax = 0

(I−)1+1φmax = 0

structure : (p,q)

• So quarks (u,d,s) have p = 1, q = 0 while antiquarks (u,d,s) have p = 0, q = 1



Combining SU(3) states (2 quarks)

• Combining two SU(3) objects gives 3×3 = 9 possible states

uu
1√
2
(ud+du) 1√

2
(ud−du)

dd
1√
2
(us+su) 1√

2
(us−su)

ss
1√
2
(ds+sd) 1√

2
(ds−sd)

6 3
3⊗3 = 6⊕3

• We know that the triplet is a 3 from its I3 and Y:



Combining SU(3) states (a 3rd quark)

• 3⊗3⊗3= 3⊗ (6⊕3) = 10s⊕8M,S⊕8M,A⊕1

• Start with the fully symmetric part of the 6:

uuu 3 such states
1√
3
(ddu+udd+dud) 6 such states

1√
6
(dsu+uds+sud+sdu+dus+usd) 1 such state

Ten states that are fully symmetric

• Now, the mixed symmetry part of the 6:

1√
6
[(ud+du)u−2uud] 8 such states

Eight states like this

• Now on to the 3:

1√
6
[(ud−du)s+(usd−dsu)+(du−ud)s] 8 such states

Eight states like this

• Final state, totally antisymmetric



Combining SU(3) states (qq)

• Start with π+ = u d

• Using:

I − |u〉 = −
∣

∣d
〉

I −
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〉

= + |u〉

We find:

I−
∣
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〉

= −|uu〉+ |dd〉
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Doing this again: π− = d u

• Now add strange quarks: 4 combinations

us ds us ds

K+ K0 K− K0

• One missing combination:

(dd+uu−2ss)/
√

6 ≡ η′

These 8 states are called an octet

• One additional independent combination: the singlet

state
(uu+dd+ss)/

√
6


